Searching and Sorting

Part One




Outline for Today

* Gauss’s Sum

« A famous, ubiquitous sum.
* Sorting Algorithms

 How quickly can we get things in order?
 Inventing an Algorithm

« Building better sorts with big-O.



Recap from Last Time



double averageOf(const Vector<int>& vec) {
double total = 0.0;

for (int 1 = 0; 1 < vec.size(); i++) {
total += vec[i];
}

return total / vec.size();

}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,
how many time units will this code take to run?



double averageOf(const Vector<int>& vec) {
double total = 0.0;

1 n+1 n

for (int 1 = 0; 1 < vec.size(); i++) {
total += vec[i];

}

return total / vec.size(); 1

}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,
how many time units will this code take to run?



double averageOf(const Vector<int>& vec) {
double total = 0.0;

1 n+1 n

for (int 1 = 0; 1 < vec.size(); i++) {
total += vec[i];

}

return total / vec.size(); 1

}

One possible answer: 3n + 4.



double averageOf(const Vector<int>& vec) {
double total = 0.0;

1 n+1 n

for (int 1 = 0; 1 < vec.size(); i++) {
total += vec[i];

}

return total / vec.size(); 1

}

More useful answer: O(n).



vold printStars(int n) {
for (int 1 = 0; 1 < n; i1++) {
for (int j = 0; j < n; j++) {
cout << '*' << endl;
}

Work Done: O(n?).



New Stuff!



GGauss’s Sum



Gauss’s Sum
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How doesthesum 1 +2 + 3 + ... + n
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How doesthesum1 +2 + 3 + ... + n
scale as n increases?
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Each figure has area n(n + 1) = n? + n.
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Half that area is the gold figure, which
sl+2+3+...+n.
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Sol+2+3+...+n=n?/2+n/?2.
But big-O ignores leading coefficients
and low order-terms.
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Sol+2+3+ ...+ n=0(Mm?).



Sorting Algorithms



What is sorting?



One style of
“sorting,” but not
the one we’re
thinking about...
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Problem: Given a list of data points, sort those data points
into ascending / descending order by some quantity.



Suppose we want to rearrange a sequence
to put elements into ascending order.

What are some strategies we could use?
How do those strategies compare?

Is there a “best” strategy?



An Initial Idea: Selection Sort



An Initial Idea: Selection Sort




An Initial Idea: Selection Sort

The smallest
element
should go in
front.
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An Initial Idea: Selection Sort

4 2 7 0

The smallest element of
the remaining elements
goes at the front of the
remaining elements.




An Initial Idea: Selection Sort




An Initial Idea: Selection Sort




An Initial Idea: Selection Sort

= |
1 2

These elements The remaining
are in the right elements are in no
place now. particular order.

4 7 O




An Initial Idea: Selection Sort




An Initial Idea: Selection Sort
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goes at the front of the
remaining elements.
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An Initial Idea: Selection Sort

7 O

The smallest of these
elements needs to go at
the front of this group of
elements.
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An Initial Idea: Selection Sort

7/

The smallest element from
this group needs to go at
the front of the group.
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These elements
are in the right
place now.




Selection Sort

* Find the smallest element and move it to
the first position.

* Find the smallest element of what’s left
and move it to the second position.

* Find the smallest element of what’s left
and move it to the third position.

* Find the smallest element of what’s left
and move it to the fourth position.

e (etc.)



/**
* Sorts the specified vector using the selection sort algorithm.
*/
vold selectionSort(Vector<int>& elems) {
for (int index = 0; index < elems.size(); index++) {
int smallestIndex = indexOfSmallest(elems, index);
swap(elems[index], elems[smallestIndex]);

}
}

/**
* Given a vector and a starting point, returns the index of the
* smallest element in that vector at or after the starting point.

*

/
int indexOfSmallest(const Vector<int>& elems, int startPoint) {

int smallestIndex = startPoint;
for (int 1 = startPoint + 1; 1 < elems.size(); i++) {
if (elems[1] < elems[smallestIndex]) {
smallestIndex = 1i;

}
}

return smallestIndex;



{ 46, 69, 20, 16, 09, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }
L

How fast is selection sort?
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How fast is selection sort?
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Finding the element that goes in position 0 requires us to
scan all n elements.
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scan all n elements.

How fast is selection sort?



{ 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

How fast is selection sort?



{ 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n - 1 elements.

How fast is selection sort?



20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n - 1 elements.
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Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n - 1 elements.

How fast is selection sort?
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Finding the element that goes in position 0 requires us to
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scan n - 1 elements.

How fast is selection sort?



16, 20, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n - 1 elements.

Finding the element that goes in position 2 requires us to
scan n - 2 elements.

How fast is selection sort?



16, 20, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n - 1 elements.

Finding the element that goes in position 2 requires us to
scan n - 2 elements.

Number of elements scanned:
n+ @mM-1)+ mMm-2)+..+2+1.

How fast is selection sort?



16, 20, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n - 1 elements.

Finding the element that goes in position 2 requires us to
scan n - 2 elements.

Number of elements scanned:

O(n?)

How fast is selection sort?



Our theory predicts that the runtime of
selection sort is O(n?).

Does that match what we see in practice?

What should we expect to see when we
look at a runtime plot?



Time-Out for Announcemnets!



Midterm Exam Logistics

* Our midterm exam will be on Monday, February 13* from 7:00PM -
10:00PM. Locations are assigned by last (family) name:

« Abdelrahman-Lakkis: Go to Bishop Auditorium
* Langevine-Zhou: Go to Hewlett 200.
« Exam format:

 The exam covers L0O0 - L0O9 (basic C++ up through but not including
recursive backtracking) and AO - A3 (debugging through recursion).

« It’s a traditional sit-down, pencil-and-paper exam.

 It’s closed-book, closed-computer, and limited-note. You can bring an
8.5” x 11” sheet of notes with you to the exam. We will prove a syntax
reference sheet for container types; it’ll be on the course website later today.

« We’ve posted a huge searchable bank of practice problems to the
course website, along with three practice exams made from
questions selected from that bank.

« Students with OAE accommodations: If you need exam
accommodations, please contact us ASAP if you haven’t yet done so.



Recursive Drawing Prizes



Recursive Cocoa!

« We have five boxes
of Droste Cacao
that we’ll be
awarding as
prizes.

 We figured it’s a
nice recursive art
prize for our
recursive art
contest.




The Awardees


















Honorable Mention






Back to CS106B!



Another Sorting Algorithm



Our Next Idea: Insertion Sort
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This sequence in blue,
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This sequence in gray
is in no particular
order.



Our Next Idea: Insertion Sort

7 2 4 1 6

Swap this element back
until it’s in the proper
place in the blue
sequence.
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Our Next Idea: Insertion Sort

This sequence in blue,
taken in isolation, is in
sorted order.

_ II
2 4 o0 7

There are no more
gray elements, so the
sequence is sorted!



Insertion Sort

 Repeatedly insert an element into a
sorted sequence at the tront of the array.

* To insert an element, swap it backwards
until either

* (1) it's at least as big as the element before
it in the sequence, or

* (2) it’s at the front of the array.



/**
* Sorts the specified vector using insertion sort.
*

* @param v The vector to sort.
*/
vold insertionSort(Vector<int>& v) {
for (int 1 = 0; 1 < v.size(); i++) {
/* Scan backwards until either (1) there is no
* preceding element or the preceding element is
* no bigger than us.
*/
for (int j =1 -1; j>=0; j--) {
if (v[j] <= v[j + 1]) break;

/* Swap this element back one step. */
} swap(v[j], v[j + 1]);

}
}



How Fast 1s Insertion Sort?
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Work Done: 1+2+3+...+ n-1
= 0(n?)



Three Analyses

 Worst-Case Analysis

« What's the worst possible runtime for the algorithm?
» Useful for “sleeping well at night.”
 Best-Case Analysis

« What's the best possible runtime for the algorithm?

« Useful to see if the algorithm performs well in some
cases.

* Average-Case Analysis

« What's the average runtime for the algorithm?

 Far beyond the scope of this class; take CS109,
CS1061, or CS265 for more information!



The Complexity of Insertion Sort

* In the best case (the array is sorted),
insertion takes time O(n).

* In the worst case (the array is reverse-
sorted), insertion sort takes time O(n?).

 Fun fact: Insertion sorting an array of
(uniformly) random values takes, on
average, O(n?) time.

* Curious why? Come talk to me after class!



How do selection sort and insertion sort
compare against one another?



Building a Better Sorting Algorithm



A Thought Experiment

 Suppose it takes 100ms to insertion sort
an array of 20,000 random elements.

 Approximately how long will it take to
insertion sort two smaller arrays, each of
which has 10,000 random elements?

Answer at
htips://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23
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Thinking About O(n?)
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Thinking About O(n?)

2 - YaT(n) = 2T(n)
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With an O(n?)-time sorting algorithm, it
takes twice as long to sort the whole array

as it does to split the array in half and sort
each hallf.

Can we exploit this?



The Key Insight: Merge
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The Key Insight: Merge

Each step makes a single

comparison and reduces

the number of elements
by one.

If there are n total
elements, this algorithm
runs in time O(n).




The Key Insight: Merge

« The merge algorithm takes in two sorted

lists and combines them into a single
sorted list.

 While both lists are nonempty, compare their
first elements. Remove the smaller element
and append it to the output.

* Once one list is empty, add all elements from
the other list to the output.

e It runs in time O(n), where n is the total
number of elements being merged.



“Split Sort”
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1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.




“Split Sort”

void splitSort(Vector<int>& v) {
/* Split the vector in half */
int half = v. 51ze() [ 2;
Vector<int> left = v. subLlst(G half);
Vector<int> right = v.subList(half);

/* Sort each half. */
insertionSort(left);
insertionSort(right);

/* Merge them back together. */
v = merge(left, right);



“Split Sort”

void splitSort(Vector<int>& v) {

/* Split the vector in half */ Takes O(n) time,
int half = v.size() / 2; since we copy all
Vector<int> left = v.subList(0, half); n elements into
Vector<int> right = v.subList(half); new Vectors.

/* Sort each half. */
insertionSort(left);
insertionSort(right);

/* Merge them back together. */
v = merge(left, right);



“Split Sort”

void splitSort(Vector<int>& v) {

[* Split the vector in half */ Takes O(n) time,
int half = v.size() / 2;

Vector<int> left
Vector<int> right

/* Sort each half. */
insertionSort(left);
insertionSort(right);

since we copy all

v.subList(0, half); n elements into
v.subList(half); new Vectors.

}_

Takes O(n?) time, but
about half as much as
what we did before.

/* Merge them back together. */

v = merge(left, right);



“Split Sort”

void splitSort(Vector<int>& v) {

[* Split the vector in half */ Takes O(n) time,
int half = v.size() / 2;

Vector<int> left
Vector<int> right

/* Sort each half. */
insertionSort(left);
insertionSort(right);

since we copy all

v.subList(0, half); n elements into
v.subList(half); new Vectors.

}_

Takes O(n?) time, but
about half as much as
what we did before.

/* Merge them back together. */

v = merge(left, right);
A S

Takes O(n)
time.




“Split Sort”

void splitSort(Vector<int>& v) {

[* Split the vector in half */ Takes O(n) time,
int half = v.size() / 2;

Vector<int> left
Vector<int> right

/* Sort each half. */
insertionSort(left);
insertionSort(right);

since we copy all

v.subList(0, half); n elements into
v.subList(half); new Vectors.

}_

Takes O(n?) time, but
about half as much as
what we did before.

/* Merge them back together. */

v = merge(left, right);
D S

Takes O(n)
time.

Prediction: This
should still take time
O(n?), but be about
twice as fast as
insertion sort.




Next Time

* Mergesort
* A beautiftul, elegant sorting algorithm.
 Analyzing Mergesort
 An unusual runtime analysis.
« Hybrid Sorting Algorithms
 Improving on mergesort.
* Binary Search
* Finding things tfast!
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